Date: Wed, 14 Apr 1999 17:23:41 +0300 (EET DST)
From: Markku-Juhani Saarinen <mjos@cc.jyu.fi>
To: AESFirstRound@nist.gov

Subject: AES First Round Comment.

Please find attached the file "sshnote.pdf" which is intended as an
AES first round comment. Other file formats are available by
request (PostScript, LaTeX).

- mJ
Submitter:
Markku-Juhani Saarinen <mjos@ssh.fi>
SSH Communications Security Ltd.
Tekniikantie 12, FIN-02150 Espoo, Finland
Title:
A Note Regarding the Hash Function Use of MARS and RC6
Abstract:

When a block cipher is used in Davies-Meyer mode, the speed of the
resulting hash function is directly related to the key size used.
Therefore, it is often desirable to use keys that are as long as
possible.

In this paper, we investigate the security of MARS and RC6 in
the Davies-Meyer hash mode when long keys are used. We give an
algorithm that finds equivalent keys for MARS with 2712 effort.

We also give an algorithm that finds "almost" equivalent keys for
RC6 with 2717 effort. As a result of these algorithms, the
Davies-Meyer hash functions built from MARS and RC6 with certain
key sizes can be considered insecure.

The security of MARS and RC6 with 128, 192 and 256 bit key sizes
is not affected by the results presented in this paper. We propose
that the key size range of these ciphers should be limited to
match the actual security offered by them.

A Note Regarding the Hash Function Use of
MARS and RC6

Markku-Juhani O. Saarinen

SSH Communications Security Ltd.
Tekniikantie 12, FIN-02150 Espoo, Finland
mjos@ssh.fi

Abstract. When a block cipher is used in Davies-Meyer mode, the speed
of the resulting hash function is directly related to the key size used.
Therefore, it is often desirable to use keys that are as long as possible.
In this paper, we investigate the security of MARS and RC6 in the
Davies-Meyer hash mode when long keys are used. We give an algorithm
that finds equivalent keys for MARS with 2'? effort. We also give an
algorithm that finds “almost” equivalent keys for RC6 with 217 effort.
As a result of these algorithms, the Davies-Meyer hash functions built
from MARS and RC6 with certain key sizes can be considered insecure.
The security of MARS and RC6 with 128, 192 and 256 bit key sizes is
not affected by the results presented in this paper. We propose that the
key size range of these ciphers should be limited to match the actual
security offered by them.

1 Introduction

The most typical method for turning a block cipher Ej, into a hash function is
the Davies-Meyer hash [10]. In the Davies-Meyer hash, the message M is padded
and split into pieces M; of the same length as the key k.

H; = Ey,(Hi 1) © Hi 4

The hash of M is the final value of H;. The XOR operation is sometimes
replaced with another arithmetic operation, such as addition modulo 2".

Most of the dedicated hash functions, such as MD4 [7], MD5 [8], and SHA-
1 [9] also resemble this construction. The compression function of these hash
functions is bijective and can be efficiently computed in both directions. They
can be viewed as 128 / 160 - bit block ciphers with a 512-bit key.

It is easy to see that the speed of a Davies-Meyer hash is almost directly
related to the key size of the block cipher. Therefore it is interesting to note that
of the fifteen AES candidates, four allow key sizes that are larger than 256 bits:

— MARS [1] allows key sizes up to 1248 bits. The key length does not signifi-
cantly affect the speed of key setup.

— RC6 [3] allows key sizes up to 2040 bits. If the key is longer than 1408 bits,
additional mixing steps are required.

— HPC [4] allows arbitrary key sizes. An efficient algorithm for finding equiv-
alent keys for HPC (any key size) has been found [5] [6].

— FROG [11] allows key sizes up to 1000 bits. FROG has been cryptanalyzed
and will not be considered in this paper [12].

In this paper, we will give initial findings on the security of MARS and RC6
when they are used in Davies-Mayer hashing mode. For both of these ciphers,
key length does not affect the speed of encryption.

2 Equivalent keys in MARS

MARS allows keys sizes up to 1248 bits. The specification states that long key
sizes are allowed for convenience. As an example, the authors of MARS mention
that the entire result from a Diffie-Hellman key exchange could be used as a key.

An equivalent key pair (k1, k2) has a property that any plaintext block en-
crypted under these distinct keys result in equal ciphertexts: Ey, (P) = Eg, (P).
If an equal key pair is found for the encryption (or compression) function E,
collisions for the Davies-Meyer hash can be produced.

Since MARS has 40 subkeys (1280 bits of internal keying material), and
a non-surjective key schedule, an easy probabilistic argument can be used to
show that equivalent keys do exist. In the following, we will give a simple and
computationally efficient algorithm for finding such a key pair.

2.1 Attacking the MARS key schedule

The key expansion of a n-word key works roughly as follows:

. Fill the array ¢[0..38] with key words.

. Perform a linear transformation on ¢[0..38].

. Set t[39] = n.

. Stir the array ¢[0..39] using a "type-1” Feistel network.

. Shuffle the words in ¢[0..39] and store the result in £[0..39].

. Fix the keys in k that are used for multiplication, if necessary.

YUt W N

k[0..39] is the expanded key.

(The numbering of steps differs from that in [1])

Steps 2, 4, and 5 are easily reversible, but steps 1, 3, and 6 are not.

In step 6, sixteen multiplication keys are “fixed” to guarantee that the keys
are not weak; both of the lowest 2 bits should be 1 and the words should not
contain ten consecutive 0’s or 1’s.

Since approximately 4.09 words get ”fixed” into the same word, 4.09'6 =
232:5 [] arrays produce the same expanded keys in step 6. For these k[] arrays,
K> may be found by reversing steps 5 and 4 and checking if ¢[39] = 39. If this is
the case, one can reverse step 2 and obtain the 39-word key from ¢[0. . . 38].

If ¢[39] is modeled as random, the probability for ¢[39] = 39 is 2732, Since
there are 232-5 pre-images that one can try, this gives a 0.75 probability for finding

at least one such equivalent key. The effort needed to find K> is approximately
232,

Therefore, a collision can be produced for arbitrary messages with 232 effort.
Note that this method can do more than just find collisions in hash functions; it
can be used to find an equivalent 39-word key for any given key with a nonneglible
probability.

Although the design document states that MARS probably does not have
equivalent keys, it also anticipates the possibility. We quote [1], page 55:

Also, in all likelihood MARS does not have any equivalent keys: it is
highly unlikely that any two different 40-word keys have the same be-
havior, and the key expansion process is “random enough” so that it
is highly unlikely that any two different keys yield the same expanded
key array. (...) The only operation which may result in collisions is
the “key fixing”, where we ignore the lowest two bits in some of the key
words. (...) Therefore, as long as the original key is less than about
600 bits, it is highly unlikely that any pair of keys result in the same
expanded array.

2.2 Optimizing the equivalent key search

Perhaps surprisingly, equivalent keys can be found with only 2!2 effort when key

size is 5 words (160 bits), or if the key repeats itself in a 5-word cycle.
Feedback in the the linear transformation partially cancels out when key size

is 5 words, since it is defined as (K] is the input key)

fori=—7...—1,T[i] = S[i +7]
for i =0...38, T[i] = (T[i = 7] & T[i — 2]) << 3) & K[i mod n] &

When reversing expanded and fixed random 5-word keys, the value of ¢[39]
in step 3 was found to be strongly biased towards certain small numbers. After
108 iterations, the following experimental probabilities were found.

n [P[B9] = n)

5| 0.00353

71 0.00315

9| 0.00277
11| 0.00246
39| 0.00021
41| 0.00038
43| 0.00054

P(t[39] = n) for almost all other n was found to be close to the expected value
2.33 x 10710, The value P(#[39] = 39) = 0.00021 gives a complexity of 2!2 for
this attack.

Ezxample. We define K; and K> as

k1[5] =
00000b51 00000000 00000000 00000000 00000000

k2[39] =
d27d2295 ecdcfd37 108a2302 7296a0ed 54a262b4 592f4b68 ba74630a
Ta71a855 c66043a7 1eb5f38ab 2ad4ff38 5b70cal03 7fc725e4 6dbdaffl
bebabelf 65136b58 084dc0df 2a17c855 cf10e275 567£3823 4fd87ab4d
21d5c132 945b1198 86131bbf 9e066049 cb4b2leb 131238ca 90e7c908
1cb74b19 3c£36938 22c0d4f7 49ade389 4b2cb166 acbeeba7? ec8dacec
5476eb60 fb48d976 33b9dbcd 64c6cbc2

These keys produce the same key schedule and are equivalent. Only 2897
trials (a fraction of a second) were needed before this pair was found. Note that
these 32-bit words are stored into the computer memory in little endian manner.

3 Almost equivalent keys for RC6

What makes the hash function use of RC6 particularly interesting is the fact that
RC6 is a parameterized cipher; the block size can be grown in a straightforward
manner to 256 bits and beyond. If a balanced security level of 21?8 is desired in
a cryptosystem, a 256-bit hash is required.

Also, RC6 has a maximum key size of 2040 bits, making the corresponding
Davies-Meyer hash function very fast. It is clear that equivalent keys must exist,
especially when the key size is larger than the total size of the subkeys (1408
bits).

The 20-round AES version of RC6 uses 44 words of keying material: 2 for
each round, and 2 for pre- and post-whitening. In particular, the subkeys S[42]
and S[43] are added modulo 232 to the first and third words of the 128-bit block
before outputting it as ciphertext.

If the same plaintext block is encrypted using keys that only differ in S[42]
and S[43], the ciphertexts will have a constant difference. We call such keys
almost equivalent, because they have the same underlying enciphering permu-
tation. Altering the subkeys S[40] and S[41] also has a similar effect on the
ciphertexts.

3.1 Attacking the RC6-32/20/1408 key schedule

The RC6 key schedule is practically identical to that of RC5 [2]. In the following,
we will give a functionally equivalent, but simplified description of the RC6-
32/20/1408 key schedule.

Let L[44] be an array of words, containing the input key. S[44] is the subkey
array. In this special case, the indexing of S[| and L[] is always synchronized:

for ¢ = 0 to 43 do
S[i] = 9e3779b9 % i + b7e15163
A=B=0
for round =1 to 3 do
for 4 = 0 to 43 do
A=S[]=(S[E+A+B) kK3
B=1L[i]=(L[i]+ A+ B) < (A+ B)

The key schedule can be viewed as 3-round widened Feistel-like structure
that encrypts the array S[] with the key L[], at the same time mixing the
contents of L[]. The key schedule is not directly reversible, because the rotation
amount (A + B) is lost. The information flow between the rounds is in the word
pair (4, B).

Approximately one pair in a set of 264 keys will have the same values of
A and B after passes 1 and 2 by the birthday paradox. This means that the
propagation of differences stops at the round boundary and changing the key at
position L[i] only affects subkey words S[(i + 1)...43]. In fact, L[42] and L[43]
can be chosen (using straightforward arithmetic) so that the difference in A and
B is zero after the first round.

Thus, almost equivalent 1408-bit keys can be found in 22 steps by running
through different values of L[40] and L[41], making the appropriate changes to
L[42] and L[43], and hoping for a birthday effect in round 2. The correct pair
can be easily recognized, because the values of S[0...41] will match.

3.2 An optimized method for almost equivalent key search

One way to approach the problem of finding equivalent or almost equivalent
keys is to look for a differential characteristic for L[] that has the following
properties:

1. Changes in A and B will cancel out before the round boundary, so that the
start of the next round is unaffected.

2. The characteristic causes minimal change to S|]. Ideally, the characteristic
would not change the final value of S[] at all.

3. The probability of the characteristic is sufficiently high.

We have found the following high-probability characteristic:

Difference Initial |Round 1/Round 2| Final

L[41] - L’[41] 1000000{1000000 | 8000000
S[42] - S’[42] 0 8000000 0 |Low weight
L[42] - L’[42] 000000 | 8000000 0
S[43] - S’[43] 0 0 0 |Low weight
L[43] - L’[43] 8000000 0 0

A - A’ (end of round) 0 0

B - B’ (end of round) 0 0

The experimental probability that the resulting subkeys have a Hamming
distance of less than 32 is 2173, Only the post-whitening subkeys S[42] and S[43]
are affected.

1
[

Round 1 10000000 (0)

E% L[41) Round 2 10000000 (3)

Round 3 80000000 (any)

o
O

si421 —=H

(=
Round 1 80000000

Round 2 00000000 g 45] ——
Round 3 (any)

@_IJLJ

1
[

Round 1 f0000000 (0)

E _ L[42] Round 2 80000000 (any)
Round 3 00000000 (any)

a
O

I
[
si431 —=fH

Round 1 00000000

Round 2 00000000 S[43] =
Round 3 (any)

1
[

Round 1 80000000 (any)

E _ L[43] Round 2 00000000 (any)
Round 3 00000000 (any)

A B

Round 1 00000000 00000000
Round 2 00000000 00000000
Round 3 (any) (any)

Fig. 1. Finding almost equivalent keys for RC6. Left side contains the difference in
S[i] after the round. Right side contains the difference in L[i] before the round. The
assumed cyclic rotation amount is given inside parenthesis. The resulting subkeys Si]
only differ in S[42] and S[43].

Ezxample. We present two keys that, given the same plaintexts, produce cipher-
texts that have an average Hamming distance of 4.2 bits. This key pair was
found in less than a minute with a personal computer.

Key 1 and the subkey array:

k1[44] =
001950c0 00000000 .. (all zeros) .. 00000000

s1[44] =

15481c74 560ce35c d958037e 76e7da2b 2d85b706 09b2961e 82eaccd6
86fa8fc9 2023a8b6 2107d73e 6£872835 c4921f3c e26f39ea 3f0e875f
14427648 74485465 55b875c3 bbael27a 94abf44f 8ab43df9 bbs50cH7b
a931e9c4 08759ce3 c89d7386 ccc36232 2b6abbel 23d1cb2b f76bbald
Ta26ad4ce 872b66a6 d12839b6 26dc801a 6ec68932 3e82d528 cff£8all
8880df7f b49906de 0c490f92 d870dcca 8d695743 d281965e c8622906
c8bc33cc 0519feal

Key 2 and the subkey array:

k2[44] =
001950c0 .. (zeros).. 10000000 £0000000 80000000

s2[44] =
15481c74 560ce35c d958037e 76e7da2b 2d85b706 09b2961e ..
cabc33cc ab19fea3

4 Conclusions

It is commonly thought that a well-designed encryption algorithm should have a
security level that is consistent with its key size. RC6 and MARS allow keys that
are more than 1200 bits in length. To give a crude upper bound for the security
of these ciphers, we note that a straightforward meet-in-the-middle attack can
be mounted against both, RC6 and MARS. This attack has a complexity of
approximately 2600,

One can argue that a 2690 attack is completely impractical, but we have shown
that there are real dangers in using the RC6 and MARS encryption algorithms
in Davies-Meyer hash mode when the key size is very long. This illustrates the
point that an excessive degree of flexibility in key size can actually hurt security
in certain applications.

Therefore, we propose that the degree of flexibility in the key size should be
limited to match the actual security of the ciphers.

We emphasize that have studied these ciphers, and we have not found any
significant cryptographic weaknesses when the key size matches the AES require-
ments (128, 192 or 256 bits).

References

1.

10.

11.

12.

C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla, S.
M. Matyas Jr., L. O’Connor, M. Peyravian, D. Safford and N. Zunic, “MARS - a
candidate cipher for AES,” AES-submission, July 1998.

R. L. Rivest, “The RC5 encryption algorithm,” Fast Software Encryption, LNCS
1008, Springer-Verlag, 1995, pp. 86—96.

R. L. Rivest, M. Robshaw, R. Sidney and Y.L. Yin, “The RC6™™ Block Cipher,”
AES-submission, June 1998.

R. Schroeppel, “Hasty Pudding Cipher Specification,” AES-submission, June 1998.
D. Wagner, “Equivalent keys for HPC,” Rump session talk given at the Second
AES Conference, http://www.cs.berkeley.edu/"daw/papers, March 1999.

C. D’Halluin, G. Bijnens, B. Preneel and V. Rij-
men, “Equivalent keys of HPC,) Version 1.0, manuscript,
http://www.esat.kuleuven.ac.be/ rijmen/pub99.html, April 1999.

R. L. Rivest, “The MD4 Message Digest Algorithm,” Proceedings of CRYPTO ’90,
LNCS 537, Springer-Verlag, 1991, pp. 303-311.

R. L. Rivest, “The MD5 Message Digest Algorithm,” Internet RFC 1321,
ftp://ftp.isi.edu/in-notes/rfc1321.txt, 1992.

National Institute of Standards and Technology, “Secure Hash Standard,” FIPS
PUB 180-1, 1995.

B. Preneel, R. Govaerts and J. Vandewalle, “Hash functions based on block ciphers:
a synthetic approach,” Proceedings of CRYPTO ’93, LNCS 773, Springer-Verlag,
1994, pp. 368-378.

D. G. Georguidis, D. Leroux and B. S. Chaves, “the FROG Encryption algorithm,”
AES submission, 1998.

D. Wagner, N. Ferguson and B. Schneier, “Cryptanalysis of FROG,” to appear in
the proceedings of the Second AES Candidate Conference, April 1999.

